12591 measured reflections

 $R_{\rm int} = 0.045$

3859 independent reflections

2695 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2,4-Dinitrophenyl)-2-(propan-2-ylidene)hydrazine

Zu-Pei Liang

Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: zupeiliang@yahoo.com.cn

Received 25 April 2007; accepted 21 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.058; wR factor = 0.141; data-to-parameter ratio = 12.2.

The asymmetric unit of the title compound, $C_9H_{10}N_4O_4$, consists of two crystallographically independent molecules, which are held together by $C-H \cdot \cdot \cdot O$ hydrogen bonds. Each molecule is essentially planar.

Related literature

For related literature, see: Saraçoğlu et al. (2004).

Experimental

Crystal data $C_9H_{10}N_4O_4$ $M_r = 238.21$ Monoclinic, $P2_1/n$ a = 5.3299 (11) Å b = 11.189 (2) Å c = 37.172 (7) Å $\beta = 93.31$ (3)°

 $V = 2213.1 (7) Å^{3}$ Z = 8 Mo K radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 293 (2) K 0.12 × 0.10 × 0.08 mm Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2004) $T_{\min} = 0.986, T_{\max} = 0.991$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	H atoms treated by a mixture of
$wR(F^2) = 0.141$	independent and constrained
S = 1.12	refinement
3859 reflections	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
317 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2 - H2 \cdots O1^{i}$	0.93	2.42	3.300 (3)	157
$C18 - H18C \cdots O3^{iii}$	0.96	2.56	3.389 (4)	105
C10−H10···O5 ^{iv}	0.93	2.46	3.295 (4)	150

Symmetry codes: (i) -x - 1, -y + 2, -z; (ii) x + 1, y - 1, z; (iii) x, y - 1, z; (iv) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku, 2004); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Doctoral Foundation of Weifang University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2160).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Saraçoğlu, H., Davran, C., Soylu, S., Andaç, Ö., Batı, H. & Çalışkan, N. (2004). Acta Cryst. E60, 01307-01309.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o2943 [doi:10.1107/81600536807024749]

1-(2,4-Dinitrophenyl)-2-(propan-2-ylidene)hydrazine

Z.-P. Liang

Comment

Schiff base and its complexes are widely used in the fields of biology, catalysis and material. In this paper, the structure of the title compound, (I), is reported. The asymmetric unit of (I) consists of two independent molecules (Fig. 1). The bond lengths and angles agree with those in the compound 3-[(2,4-dinitrophenyl)hydrazono]butan-2-one oxime (Saracoglu *et al.*, 2004). The all non-H atoms of each independent molecule are essentially coplanar, within 0.052 (2) and 0.055 (3) Å. The dihedral angle between two independent molecules is 76.4 (2)°. The crystal structure is stabilized by C—H…O hydrogen bonds (Fig. 2 and Table 1).

Experimental

1-(2,4-Dinitrophenyl)hydrazine (10 mmol) in propanone (20 ml) was refluxed for 2 h. After cooling, the solution was kept at room temperature for 10 d. Natural evaporation gave yellow single crystals of (I) suitable for X-ray analysis.

Refinement

N-bound H atoms were located in a difference map and their positional parameters were refined, with $U_{iso}(H) = 1.2U_{eq}(N)$. Other H atoms were positioned geometrically (C—H = 0.93 Å or 0.96 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The asymmetric unit of (I), drawn with 30% probability ellipsoids.

Fig. 2. A packing view of (I) along the *a* axis. Hydrogen bonds are indicated by dashed lines.

1-(2,4-Dinitrophenyl)-2-(propan-2-ylidene)hydrazine

Crystal data	
$C_9H_{10}N_4O_4$	$F_{000} = 992$
$M_r = 238.21$	$D_{\rm x} = 1.430 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2238 reflections
<i>a</i> = 5.3299 (11) Å	$\theta = 2.3 - 22.5^{\circ}$
<i>b</i> = 11.189 (2) Å	$\mu = 0.12 \text{ mm}^{-1}$
<i>c</i> = 37.172 (7) Å	T = 293 (2) K
$\beta = 93.31 \ (3)^{\circ}$	Block, yellow
$V = 2213.1 (7) \text{ Å}^3$	$0.12\times0.10\times0.08~mm$
Z = 8	

Data collection

Rigaku Saturn diffractometer	$R_{\rm int} = 0.045$
Radiation source: rotating anode	$\theta_{\text{max}} = 25.0^{\circ}$
Monochromator: confocal	$\theta_{\min} = 1.9^{\circ}$
T = 293(2) K	$h = -6 \rightarrow 2$
ω scans	$k = -12 \rightarrow 13$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2004)	$l = -44 \rightarrow 44$
$T_{\min} = 0.986, T_{\max} = 0.991$	Standard reflections: .;
12591 measured reflections	every . reflections
3859 independent reflections	intensity decay: .
2695 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2
Least-squares matrix: full
$P(F^2) = O(F^2) = O(F^2)$

 $R[F^2 > 2\sigma(F^2)] = 0.058$

 $wR(F^2) = 0.141$

S = 1.12

3859 reflections

317 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0628P)^2 + 0.0593P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.13$ e Å⁻³

 $\Delta \rho_{min} = -0.14 \text{ e} \text{ Å}^{-3}$

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.4124 (4)	1.13689 (16)	0.02987 (6)	0.0944 (7)
O2	-0.1589 (4)	1.22257 (15)	0.06903 (7)	0.1047 (8)
03	0.5342 (4)	1.01915 (16)	0.12217 (6)	0.0882 (6)
O4	0.6236 (3)	0.83732 (16)	0.10960 (5)	0.0700 (5)
O5	0.2146 (4)	0.8646 (2)	0.25369 (7)	0.1055 (8)
O6	0.4578 (5)	0.9955 (2)	0.23075 (7)	0.1078 (8)
07	1.1155 (3)	0.87148 (18)	0.15955 (5)	0.0847 (6)
08	1.1459 (4)	0.6908 (2)	0.14115 (6)	0.0903 (6)
N1	-0.2260 (4)	1.13669 (17)	0.05044 (7)	0.0701 (6)
N2	0.4892 (4)	0.9265 (2)	0.10567 (5)	0.0607 (5)
N3	0.3397 (4)	0.71717 (16)	0.06354 (6)	0.0576 (5)
H3	0.454 (5)	0.714 (2)	0.0802 (7)	0.069*
N4	0.2541 (4)	0.61533 (16)	0.04575 (6)	0.0608 (5)
N5	1.0493 (4)	0.7669 (2)	0.15980 (6)	0.0687 (6)
N6	0.9126 (4)	0.5189 (2)	0.17335 (6)	0.0684 (6)
H6	1.040 (5)	0.542 (2)	0.1593 (8)	0.082*
N7	0.8486 (4)	0.4022 (2)	0.18100 (6)	0.0741 (6)
N8	0.3933 (5)	0.8921 (3)	0.23606 (7)	0.0825 (7)
C1	-0.0081 (4)	0.82699 (19)	0.03643 (6)	0.0546 (6)
H1	-0.0556	0.7608	0.0225	0.066*
C2	-0.1472 (4)	0.92925 (19)	0.03302 (6)	0.0560 (6)
H2	-0.2880	0.9325	0.0171	0.067*
C3	-0.0761 (4)	1.02841 (18)	0.05361 (6)	0.0528 (6)
C4	0.1303 (4)	1.02565 (18)	0.07705 (6)	0.0544 (6)
H4	0.1754	1.0929	0.0906	0.065*
C5	0.2725 (4)	0.92244 (19)	0.08053 (6)	0.0500 (5)
C6	0.2055 (4)	0.81925 (17)	0.06047 (6)	0.0471 (5)
C7	0.3855 (5)	0.5209 (2)	0.05221 (7)	0.0650 (7)
C8	0.6148 (6)	0.5150 (2)	0.07713 (10)	0.0907 (10)
H8A	0.7477	0.5599	0.0672	0.136*
H8B	0.6660	0.4332	0.0802	0.136*
H8C	0.5782	0.5481	0.1001	0.136*
C9	0.2987 (6)	0.4098 (2)	0.03317 (9)	0.0887 (9)

H9A	0.1543	0.4274	0.0174	0.133*
H9B	0.2550	0.3509	0.0505	0.133*
Н9С	0.4311	0.3794	0.0193	0.133*
C10	0.5939 (4)	0.5876 (2)	0.21139 (6)	0.0623 (6)
H10	0.5500	0.5089	0.2161	0.075*
C11	0.4674 (5)	0.6777 (2)	0.22648 (7)	0.0654 (7)
H11	0.3361	0.6608	0.2411	0.078*
C12	0.5341 (5)	0.7961 (2)	0.22007 (7)	0.0632 (7)
C13	0.7241 (5)	0.8237 (2)	0.19851 (7)	0.0623 (6)
H13	0.7669	0.9029	0.1945	0.075*
C14	0.8516 (4)	0.7320 (2)	0.18281 (6)	0.0570 (6)
C15	0.7918 (4)	0.6108 (2)	0.18860 (6)	0.0574 (6)
C16	0.9862 (6)	0.3210 (3)	0.16758 (8)	0.0804 (8)
C17	1.2042 (6)	0.3440 (3)	0.14543 (11)	0.1074 (11)
H17A	1.1481	0.3845	0.1237	0.161*
H17B	1.2807	0.2694	0.1395	0.161*
H17C	1.3247	0.3929	0.1588	0.161*
C18	0.9177 (7)	0.1943 (3)	0.17554 (10)	0.1160 (13)
H18A	0.7805	0.1933	0.1912	0.174*
H18B	1.0600	0.1544	0.1871	0.174*
H18C	0.8688	0.1539	0.1535	0.174*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0796 (13)	0.0767 (12)	0.1238 (19)	0.0243 (11)	-0.0213 (13)	0.0016 (11)
02	0.1113 (17)	0.0509 (10)	0.149 (2)	0.0149 (11)	-0.0200 (15)	-0.0195 (12)
03	0.0856 (14)	0.0816 (12)	0.0942 (15)	-0.0194 (11)	-0.0227 (11)	-0.0216 (11)
O4	0.0554 (10)	0.0801 (11)	0.0729 (12)	0.0017 (10)	-0.0110 (9)	0.0050 (9)
O5	0.0700 (13)	0.1395 (19)	0.1079 (18)	0.0167 (13)	0.0133 (13)	-0.0320 (14)
O6	0.1090 (18)	0.0868 (14)	0.126 (2)	0.0116 (14)	-0.0036 (15)	-0.0260 (13)
07	0.0706 (12)	0.0946 (14)	0.0878 (15)	-0.0246 (11)	-0.0041 (10)	0.0233 (10)
08	0.0825 (14)	0.1085 (15)	0.0831 (14)	-0.0009 (12)	0.0310 (12)	0.0047 (12)
N1	0.0724 (15)	0.0512 (12)	0.0870 (17)	0.0066 (12)	0.0063 (13)	0.0055 (11)
N2	0.0562 (12)	0.0684 (13)	0.0569 (13)	-0.0116 (11)	-0.0025 (10)	0.0010 (10)
N3	0.0564 (12)	0.0536 (11)	0.0619 (13)	0.0030 (10)	-0.0049 (10)	-0.0037 (9)
N4	0.0633 (12)	0.0512 (11)	0.0676 (13)	0.0065 (10)	-0.0003 (10)	-0.0070 (9)
N5	0.0534 (13)	0.0928 (17)	0.0587 (14)	-0.0061 (13)	-0.0066 (11)	0.0164 (12)
N6	0.0619 (13)	0.0757 (15)	0.0683 (15)	-0.0008 (12)	0.0087 (12)	-0.0036 (11)
N7	0.0750 (15)	0.0729 (14)	0.0737 (15)	-0.0054 (13)	-0.0025 (12)	-0.0067 (11)
N8	0.0667 (16)	0.0973 (19)	0.0817 (18)	0.0129 (15)	-0.0112 (14)	-0.0193 (14)
C1	0.0563 (14)	0.0525 (13)	0.0545 (15)	-0.0010 (11)	-0.0007 (12)	-0.0064 (10)
C2	0.0542 (13)	0.0579 (13)	0.0549 (15)	0.0044 (12)	-0.0044 (11)	0.0028 (11)
C3	0.0548 (14)	0.0451 (12)	0.0588 (15)	0.0009 (11)	0.0069 (12)	0.0020 (10)
C4	0.0578 (14)	0.0474 (12)	0.0583 (15)	-0.0089 (11)	0.0057 (12)	-0.0054 (10)
C5	0.0484 (12)	0.0550 (12)	0.0462 (13)	-0.0073 (11)	-0.0007 (10)	0.0033 (10)
C6	0.0485 (12)	0.0447 (11)	0.0482 (13)	0.0011 (10)	0.0043 (11)	0.0026 (9)
C7	0.0633 (15)	0.0540 (13)	0.0782 (19)	0.0081 (13)	0.0086 (14)	0.0018 (12)

C8	0.0768 (19)	0.0681 (16)	0.125 (3)	0.0201 (15)	-0.0160 (19)	0.0074 (16)
C9	0.100 (2)	0.0564 (15)	0.109 (2)	0.0165 (15)	-0.0041 (19)	-0.0122 (14)
C10	0.0558 (14)	0.0724 (15)	0.0586 (16)	-0.0039 (13)	0.0015 (13)	0.0065 (12)
C11	0.0506 (14)	0.0881 (18)	0.0574 (16)	-0.0004 (14)	0.0026 (12)	0.0031 (13)
C12	0.0521 (14)	0.0794 (17)	0.0565 (16)	0.0102 (14)	-0.0117 (13)	-0.0060 (12)
C13	0.0558 (14)	0.0701 (15)	0.0592 (16)	-0.0011 (13)	-0.0121 (13)	0.0039 (12)
C14	0.0451 (12)	0.0772 (16)	0.0480 (14)	-0.0041 (13)	-0.0031 (11)	0.0083 (11)
C15	0.0482 (13)	0.0760 (16)	0.0471 (14)	-0.0033 (13)	-0.0053 (11)	0.0019 (11)
C16	0.081 (2)	0.0822 (19)	0.075 (2)	-0.0002 (17)	-0.0193 (16)	-0.0245 (15)
C17	0.082 (2)	0.115 (2)	0.127 (3)	-0.0005 (19)	0.014 (2)	-0.047 (2)
C18	0.147 (3)	0.080 (2)	0.118 (3)	-0.008 (2)	-0.017 (3)	-0.0247 (18)

Geometric parameters (Å, °)

01—N1	1.218 (3)	C4—H4	0.9300
O2—N1	1.225 (3)	C5—C6	1.409 (3)
O3—N2	1.221 (2)	С7—С9	1.491 (4)
O4—N2	1.232 (2)	C7—C8	1.492 (4)
O5—N8	1.226 (3)	C8—H8A	0.9600
O6—N8	1.226 (3)	C8—H8B	0.9600
O7—N5	1.222 (3)	C8—H8C	0.9600
O8—N5	1.230 (3)	С9—Н9А	0.9600
N1—C3	1.452 (3)	С9—Н9В	0.9600
N2—C5	1.444 (3)	С9—Н9С	0.9600
N3—C6	1.349 (3)	C10—C11	1.353 (3)
N3—N4	1.382 (3)	C10—C15	1.414 (3)
N3—H3	0.84 (2)	С10—Н10	0.9300
N4—C7	1.282 (3)	C11—C12	1.396 (3)
N5—C14	1.449 (3)	C11—H11	0.9300
N6—C15	1.355 (3)	C12—C13	1.362 (4)
N6—N7	1.383 (3)	C13—C14	1.378 (3)
N6—H6	0.92 (3)	C13—H13	0.9300
N7—C16	1.286 (3)	C14—C15	1.412 (3)
N8—C12	1.457 (3)	C16—C17	1.484 (5)
C1—C2	1.365 (3)	C16—C18	1.498 (4)
C1—C6	1.409 (3)	С17—Н17А	0.9600
C1—H1	0.9300	C17—H17B	0.9600
C2—C3	1.388 (3)	C17—H17C	0.9600
С2—Н2	0.9300	C18—H18A	0.9600
C3—C4	1.364 (3)	C18—H18B	0.9600
C4—C5	1.383 (3)	C18—H18C	0.9600
?…?	?		
01—N1—02	123.6 (2)	H8A—C8—H8B	109.5
O1—N1—C3	118.5 (2)	C7—C8—H8C	109.5
O2—N1—C3	117.9 (2)	H8A—C8—H8C	109.5
O3—N2—O4	122.1 (2)	H8B—C8—H8C	109.5
O3—N2—C5	118.6 (2)	С7—С9—Н9А	109.5
O4—N2—C5	119.27 (19)	С7—С9—Н9В	109.5
C6—N3—N4	119.9 (2)	H9A—C9—H9B	109.5

C6—N3—H3	116.9 (16)	С7—С9—Н9С	109.5
N4—N3—H3	121.5 (16)	Н9А—С9—Н9С	109.5
C7—N4—N3	115.3 (2)	Н9В—С9—Н9С	109.5
07—N5—O8	121.9 (2)	C11—C10—C15	121.2 (2)
O7—N5—C14	118.9 (2)	C11-C10-H10	119.4
O8—N5—C14	119.2 (2)	C15—C10—H10	119.4
C15—N6—N7	120.1 (2)	C10-C11-C12	119.9 (2)
C15—N6—H6	114.1 (16)	C10-C11-H11	120.1
N7—N6—H6	125.7 (16)	C12—C11—H11	120.1
C16—N7—N6	115.7 (2)	C13—C12—C11	121.4 (2)
O6—N8—O5	123.8 (3)	C13—C12—N8	119.4 (3)
O6—N8—C12	118.3 (3)	C11-C12-N8	119.2 (3)
O5—N8—C12	117.9 (3)	C12-C13-C14	118.8 (2)
C2—C1—C6	121.7 (2)	С12—С13—Н13	120.6
C2—C1—H1	119.2	C14—C13—H13	120.6
C6—C1—H1	119.2	C13—C14—C15	121.9 (2)
C1—C2—C3	119.3 (2)	C13—C14—N5	116.3 (2)
C1—C2—H2	120.3	C15—C14—N5	121.8 (2)
C3—C2—H2	120.3	N6-C15-C14	123.2 (2)
C4—C3—C2	121.2 (2)	N6-C15-C10	120.0 (2)
C4—C3—N1	119.4 (2)	C14—C15—C10	116.8 (2)
C2—C3—N1	119.4 (2)	N7—C16—C17	125.1 (3)
C3—C4—C5	119.7 (2)	N7—C16—C18	116.2 (3)
C3—C4—H4	120.1	C17—C16—C18	118.7 (3)
С5—С4—Н4	120.1	С16—С17—Н17А	109.5
C4—C5—C6	120.9 (2)	С16—С17—Н17В	109.5
C4—C5—N2	116.6 (2)	H17A—C17—H17B	109.5
C6—C5—N2	122.5 (2)	С16—С17—Н17С	109.5
N3—C6—C1	120.7 (2)	H17A—C17—H17C	109.5
N3—C6—C5	122.1 (2)	H17B—C17—H17C	109.5
C1—C6—C5	117.13 (19)	C16—C18—H18A	109.5
N4—C7—C9	116.6 (2)	C16—C18—H18B	109.5
N4—C7—C8	124.9 (2)	H18A—C18—H18B	109.5
C9—C7—C8	118.6 (2)	C16—C18—H18C	109.5
С7—С8—Н8А	109.5	H18A—C18—H18C	109.5
С7—С8—Н8В	109.5	H18B—C18—H18C	109.5
C6—N3—N4—C7	-1755(2)	N3-N4-C7-C8	0.6(4)
C_{15} N6 N7 C_{16}	-1747(2)	$C_{15} = C_{10} = C_{11} = C_{12}$	-10(3)
$C_{6} - C_{1} - C_{2} - C_{3}^{2}$	174.7(2)	$C_{10} = C_{11} = C_{12} = C_{13}$	0.6(4)
$C_{1} = C_{2} = C_{3}$	0.3(3)	C10-C11-C12-N8	179.0(2)
C1 - C2 - C3 - C4	-1790(2)	06 - N8 - C12 - C13	-3.0(3)
01 - 01 - 03 - 04	-178.7(2)	05 - N8 - C12 - C13	176.0(2)
02 - N1 - C3 - C4	176.7(2)	06 - N8 - C12 - C11	170.0(2) 178.5(2)
01 N1 C3 C2	0.5(3)	05 N8 C12 C11	-24(3)
01 - N1 - C3 - C2	170.8(2)	C_{11} C_{12} C_{13} C_{14}	2.4(3)
$C_2 = C_3 = C_4 = C_5$	1/2.0(2)	$N_{12} - C_{12} - C_{13} - C_{14}$	-178.4.(2)
$N_1 = C_3 = C_4 = C_5$	1703(2)	110 - 012 - 013 - 014	-0.3(2)
$C_{1} = C_{1} = C_{2} = C_{1}$	-0.7(3)	$C_{12} - C_{13} - C_{14} - C_{13}$	(0.5(5))
$C_3 = C_4 = C_5 = C_0$	-0.7(3)	C_{12} $-C_{13}$ $-C_{14}$ $-N_{3}$	1/9.2(2)
U3-U4-U3-N2	1/9.0 (2)	U/	10.2 (3)

O3—N2—C5—C4	0.0 (3)	O8—N5—C14—C13	-170.0 (2)
O4—N2—C5—C4	-179.4 (2)	O7—N5—C14—C15	-170.3 (2)
O3—N2—C5—C6	-179.7 (2)	O8—N5—C14—C15	9.5 (3)
O4—N2—C5—C6	0.9 (3)	N7—N6—C15—C14	178.2 (2)
N4—N3—C6—C1	-6.5 (3)	N7—N6—C15—C10	-2.2 (3)
N4—N3—C6—C5	174.2 (2)	C13-C14-C15-N6	179.5 (2)
C2-C1-C6-N3	179.7 (2)	N5-C14-C15-N6	0.0 (3)
C2—C1—C6—C5	-1.0 (3)	C13-C14-C15-C10	0.0 (3)
C4—C5—C6—N3	-179.5 (2)	N5-C14-C15-C10	-179.5 (2)
N2C5	0.2 (3)	C11-C10-C15-N6	-178.9 (2)
C4—C5—C6—C1	1.2 (3)	C11-C10-C15-C14	0.7 (3)
N2	-179.12 (19)	N6—N7—C16—C17	0.7 (4)
N3—N4—C7—C9	-179.5 (2)	N6—N7—C16—C18	-179.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H··· A
C2—H2···O1 ⁱ	0.93	2.42	3.300 (3)	157
C8—H8B····O2 ⁱⁱ	0.96	2.58	3.506 (3)	163
C18—H18C····O3 ⁱⁱⁱ	0.96	2.56	3.389 (4)	144
C10—H10····O5 ^{iv}	0.93	2.46	3.295 (4)	150
Summatry adds: (i) $-x = 1$ $-x = 2$ $-x = (ii)$ $x = 1$ $-x = (iii)$ $x = x = 1$ $-x = (iii)$ $-x = 1/2$ $-x = 1/2$				

Symmetry codes: (i) -x-1, -y+2, -z; (ii) x+1, y-1, z; (iii) x, y-1, z; (iv) -x+1/2, y-1/2, -z+1/2.

Fig. 1

